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LETTER TO THE EDITOR 

On the cluster size distribution for critical percolation 

George D Quinn, George H Bishop and Ralph J Harrison 
Army Materials and Mechanics Research Center, Watertown, Massachusetts 02172, USA 

Received 3 December 1975 

Abstract A Monte Carlo study of clustering .in the vicinity of the critical percolation 
probability pc  has been camed out on the bodycentered cubic lattice in which both first- 
and second-neighbour sites were counted. The total number of clusters shows an inflection 
point when plotted against concentration of occupied sites in the vicinity of pc suggesting 
that a characteristic of p .  may be a maximum rate of loss of clusters due to aggregation. 
An empirical form for the cluster size distribution in the critical regon has been found 
which matches the present data as well as previ,ous results on other lattice geometries 
obtained by Dean and Bird. At large cluster sizes the distribution at p ,  becomes asymptoti- 
cally an inverse power law with exponent slightly larger than two. An argument is presented 
which relates this exponent to the linear extent of the cluster. 

This letter reports certain features of the cluster size distribution in the vicinity of the 
critical percolation probability pc obtained in a Monte Carlo study of clustering on the 
body-centred cubic lattice in which first- and second-neighbour sites were counted 
(the BCC 1-2 site problem). As will be indicated however, much of the discussion is 
applicable to more general geometries. The computational method uses a cubic cell 
of 128 OOO lattice sites, each site randomly occupied or unoccupied with probability p 
or (1 - p )  respectively. A search then obtains the size?. and topology of each cluster, 
utilizing periodic boundary conditions to continue the search across the cell faces. The 
method is similar to that of Dean and Bird (1966) in overall approach but differs in the 
way the clusters are generated and examined; Dean and Bird do not examine cluster 
topology. A minimum of three statistically independent repetitions of the computation 
were made at each value of p. Fifteen repetitions were made at p = 0.175 which is the 
value given by Domb and Dalton (1966) for the most probable value of pc. Further 
details of the computational method as well as the topological results will be presented 
separately (Quinn et a1 1976). 

Averages for quantities such as c(n, p, N ) ,  the number of clusters of size n, given p 
and the sample size N ,  and for the total number of clusters T(p, N )  and the mean cluster 
size S ( p )  = W c ( n ,  p, N)/Znc(n, p ,  N )  were obtained from the Monte Carlo sampling 
procedure. These quantities can also be evaluated using theoretical results for 
x(n, p) = limN+a c(n, p, N ) / N .  Polynomial expressions in p and (1 - p )  have been ob- 
tained by enumerating the various cluster configurations for each n for a number of 
lattices for relatively small values of n (Sykes and Glen 1976). For the BCC 1-2 site prob- 
lem these polynomials are available up to ~ ( 8 ,  p) (Domb and Sykes, private communica- 
tion). We have obtained good agreement between our Monte Carlo data and the theory. 
t As is conventional in percolation studies size is taken as the number of sites in the cluster. There is currently 
a growing interest in the shape, lineal extent and topology of clusters (Domb et al 1975, @inn et a1 1976). 
Recent reviews of percolation theory include those of Shante and Kirkpatrick (1971) and Essam (1972). 

L9 



L10 Letter to the Editor 

Computational results for the average of the total number of clusters T(p, N) are 
given in figure 1. As p increases unoccupied sites are progressively occupied A newly 
occupied site may fall in one of three categories: (i) it may be isolated, increasing T by 
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F i i  1. Computational results for the average of the total number of clusters T@, 1‘0. 
The full m e  gives the series expansion and the broken curve with crosses gives the Monte 
Cdodata. N = 128000. 

one; (ii) it may be a neighbouring site to a single existing cluster so that Tis unchanged ; 
or (iii) it can link two to six existing clusters, decreasing T by one or more. At small p 
the first possibility predominates and T Z pN (the straight line). As p increases, the 
probability of forming larger clusters increases and T passes through a maximum when 
the rate of new cluster formation is just balanced by the rate of cluster linkage. The 
total number of clusters then decreases, has an inflection point, and approaches zero 
asymptotically. The rapid decrease of T with p beyond the maximum is due to the 
increased probability that newly occupied sites will link existing clusters. An expansion 
of T as a power series in p to order m may be obtained from a knowledge of the poly- 
nomials dn, p )  through order n = m. This expansion in T may also be obtained more 
directly (Essam 1972). To order 10 it yields 

TIN = p -  7pz+ 12p3 - 3p4-6p5+ 77p6 -206p7+ 1 1 4 4 ~ ~  - 3180p9+ 17367~”. (1) 
This polynomial which is plotted as the full curve in figure 1 yields good agreement with 
the Monte Carlo data for p less than 0.20. 

An interesting feature of the T-p curve is the inflection which occurs very close to, 
and possibly precisely at, p c .  This suggests the following properties: the rate of loss by 
linking of clusters is a maximum at p ,  and therefore for a region around pc this rate is 
nearly constant In turn this suggests that the cluster size distribution characteristic of 
p ,  is also nearly constant in some range of p above and below p c ,  in agreement with 
features of the size distribution data to be presented shortly. The evidence that the 
inflection occurs exactly at pc can be only suggestive on the basis of numerical compu- 
tations; we may point out that the inflection points obtained from equation (1) by 
truncations at the fourth through tenth powers of p are p = 0.218, 0.254, 0.185, 0.227, 
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0.180, 0.199, 0.177 respectively. The even-order terms appear to approach the value 
0.175 more quickly and closely than the odd terms. 

Characterization of the cluster size distribution near pc by numerical techniques is 
difficult since most interest centres on the large clusters for which the statistical fluctu- 
ations are most troublesome. The large clusters are also difficult to Knvestigate by 
evaluation of the cluster polynomials since the number of possible conligurations 
increases exponentially with n. In the present work with 128 OOO sites and with the order 
of 15 trials the individual values of c(n, p ,  N )  are unreliable for n much greater than 15. 
The statistics can be greatly improved however by examining the partial sums 
C,(i, p ,  N )  = C(n = r'- l, r'- IMn, p ,  N) .  We found that the choice r = 2 provides a 
good compromise between resolution and scatter. Figure 2 shows the data for p = 0.175 
and for a few values of p above and below this. 

z i - 1  
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figure 2. (a) Plot of Cz( i ,p ,  N) against i for N = 128000 and various values ofp: 0,0.10; 
x ,  0125; +, C-15; ., 0.175; Z, 0.19; H, 0.20; *, 0.215. (b) Plot of C, ( i , p ,N) /T(p ,N)  for 
various values of p :  +, 0.16; x ,  0.17; 0, 0.175; *, 0.18. 

If we refer to the distribution at precisely pc as canonical, we see in figure 2(a) that 
for small values of p the curves fa11 off? rather sharply from the canonical curve at 
relatively small sizes. As p increases a flatter region develops at lower cluster sizes 
before falling off at larger sizes. As pc  is approached one approaches the canonical 
distribution which appears quite linear in this plot. For p in the immediate vicinity of 
pc the distribution curves are very nearly parallel to the canonical distribution up to 
quite large cluster sizes, see figure 2(b) in which CJi, p ,  N )  has been normalized by 
division by T(p, N).  For values of p greater than pc the distribution falls off from canoni- 
cal quite similarly to the way it does below p c .  The fact that the distributions both above 
and below the critical probability fall off much more rapidly for large n than does the 

7 This fall off is consistent with the exponential increase of the average cluster size S(p) near critical The BCC 

1-2lattiCedatagiveSb) 2 A(~;~)-~ ,with  A - 160and - y  = 1.7,and theexponentagreeswell withestimates 
based on series expansions (Essam 1972). 
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canonical distribution makes the latter the distribution of 'maximum richness' for large 
clusters. Although in the numerical computations the finite value of N will cause a 
truncation of the larger clusters, one might expect the above limiting behaviour of the 
canonical distribution in the limit of infinite N .  For the data near pc two effects of the 
finite sample size are that no clusters are observed in groups with i > 14, and the 
C2(i, p ,  N) for groups i = 13, 14 appear to be too high, presumably because truncation 
of large clusters pushes them into lower size groups. 

The linearity of the canonical distribution in figure 2 reveals what appears to be a 
general property of the partial sums CJi, p ,  N) ,  namely that they are approximated 
quite closely for large i and for N much larger than r' by a simple law of the form 

(2) 

in which O is a constant dependent on r and geometry which can be expressed as 
8 = r('+'), with 6 a small positive constant varying with geometry. The best fit to the 
BCC 1-2 site data yields 6 = 0.0938. For i = 1 and 2, with r = 2, the Monte Carlo daza 
deviate from the power law relationship of equation (2). This appears to be an intrinsic 
property of the canonical cluster size distribution, since the exact values calculated 
from fin, p )  and the Monte Carlo data agree almost precisely here. For these values of 
i only simple clusters are possible and they differ from the typical highly ramified (Domb 
et a1 1975) larger clusters which show highly multiple connected topology (Quinn et a1 
1976). 

An approximate inversion of equation (2) to extract the form of the cluster size 
distribution itself may be obtained in the form 

CAi, p c ,  N )  = constant/O' 

U N  
c(n9 pc7  = n(n+ 1)[32n+ l)]'. ( 3 )  

With a = 0.0283 the partial sums of this inversion, plotted as the straight line in figure 2 
deviate from equation (2) by less than 0.1% and the individual values for c(n) are in 
excellent agreement with the Monte Carlo data for n greater than 3 and up to the point 
where statistical fluctuations become large. In fact for very small n equation (3 )  provides 
a slightly better fit to the canonical distribution than would an exact inversion of 
equation (2). 

Thus far the discussion of the data has been restricted to the site problem for the 
BCC 1-2 lattice. Equations (2) and (3) appear however to be more generally valid. Dean 
and Bird (1966) have published results of Monte Carlo calculations on a number of 
other lattices. Because their data for larger cluster sizes were grouped in powers of ten 
we examined the partial sums Cl&, p ,  N )  and again found both equations to give a good 
fit to data at the critical percolation probability. Moreover, it was found that the 
constants U and S could be correlated with the coordination number Z of the various 
lattices. For two-dimensional lattices the value of 6 is constant at 0@476+0.0166 to 
within the scatter in the data, while the value of a varied approximately as Z-'I2.  Thus 
the size distribution for two-dimensional lattices can be written as 

0-06092- 1'2N 
c(ny p c 7  = n(n+ 1)(2n+ 1)" (4) 

For three-dimensional lattices it is found that a varies approximately as Z -  while 6 
also varies with Z, being given approximately by 2.242- '". The three-dimensional 
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size distribution is given then by 

Equations (4) and (5 )  agree with the Gats of Dean and Bird and with our own results 
within experimental error for n larger than 7. It may be noted that while the empirical 
expressions were obtained using data on the site problems they also fit the ‘SQ 1’ bond 
data of Dean and Bird. 

The primary qualitative result of the present empirical study is that the critical size 
distribution approximates a simple power law of the form c(n,pcr N )  - n- (2+6)  for 
large n. The exponent of this law can be related to the degree of linear spreading of 
large clusters by the argument we shall now outline. 

One may define the critical percolation probability as that fraction of randomly 
occupied sites for which the probability of finding a cluster spanning the system becomes 
hite,  in the limit of large systems. For three-dimensional lattices, one can be more 
precise and define the shape of the bounding surface. One usually considers a cube, 
bounded by a pair of square surfaces which are to be connected by the spanning cluster. 
In principle the critical probability may thus be a function of the orientation of the 
bounding surfaces, but for the moment we shall neglect this effect. First imagine an 
infinite system at the critical percolation concentration, with cubes of increasing sizes 
inscribed in this system. For large enough cubes there is a finite probability that they 
will contain a spanning cluster. These clusters will tend, on the average, to be of in- 
creasing size as the cubes themselves increase in size. It is to be expected therefore that 
the existence of a distribution function of cluster size which does not fall off too rapidly 
with increase in cluster size is crucial to the existence of a critical percolation path. How 
rapidly is the question. 

Let us assume that the linear extent L of a cluster in the direction of a normal to the 
bounding surface varies as some power 4 of the number n in the cluster. We shall 
discuss reasonable limits for the latter. Since the distance between the cube faces is of 
the order N1’3ao,  with a, the lattice parameter, the characteristic size of a cluster large 
enough to span the system is proportional to N1’(34). If we integrate the canonical 
cluster size distribution over all sizes larger than this we should obtain a result propor- 
tional to the probability of finding a spanning cluster. The condition for critical perco- 
lation, which must be independent of the system size N ,  will be expressed in the condition 
that the result of the integration is N independent and does not go to zero with any 
power of N .  

With our assumption that the cluster size distribution at large n and N is given by 
a constant x Nn-cz-ts’ our integration result will be proportional to I V ( N * ’ ( ~ ~ ) ) - ( ~ + * )  
The condition that this does not decrease to zero with large N is then 1 - (1 + 6)/(34) 2 0 
or 6 < 34- 1. On the other hand for convergence of the cluster size distribution 
function, 6 must be non-negative, so that must be greater than 3. This limiting value 
is just what one might expect if the clusters were completely uniform, i.e., with no 
statistical correlation between the fact of their existence at some point and their existence 
at neighbouring points. Correlation exists of course from the very fact of connectivity. 
For non-percolation clusters where correlation effects have been analysed, such as the 
random walk or the self-avoiding random walk (SAW), 4 has the values $ and 3 respec- 
tively (see e.g. Domb 1969). Percolation clusters differ from these in that there is no 
prefemd origin and they may be expected to be somewhat more uniformly distributed 
Over their volume, leading to values of 4 closer to f. 
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The correlations causing 4 to be greater than a come from the fact that the require- 
ments for connectivity tend to give somewhat larger than average densities ‘inside’ the 
cluster as opposed to their extremities which may be expected to be somewhat straggly. 
Where the number of neighbours 2 is large so that the continuity of the cluster can be 
satisfied at any one of a large number of neighbouring sites the correlation effects will 
be smaller. The Monte Carlo evidence presented earlier indicates that the value of 6 
for threedimensional lattices tends toward the value 0 with increasing Z, consistent 
with the value of 4 tending toward 3. 

A similar argument to the above for twodimensional lattices yields the condition 
0 < 6 < (24-l), or 4 > i. Both the uniform uncurrelated cluster and the simple 
random walk give 4 = 4, while the self-avoiding walk gives 4 = 2. In analogy to the 
threedimensional case one might also argue that 6 should approach zero with increasing 
Z, but the Monte Carlo results indicate 6 to be approximately constant although smaller 
than in three dimensions. The value of 6 independent of Z in two dimensions fits in 
with the idea of universality, and is in contrast with the apparent variation of 6 with 2 
in three dimensions. Further investigation is desirable to see if true asymptotic be- 
haviour has been reached in both cases. 

A more detailed account of this work together with numerical data is currently in 
preparation. 

The authors are grateful to Professor C Domb for helpful correspondence and discussion. 
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